
Building Blocks for the
Rapid Development of

Parallel Simulation
Peter Stoltz, Tech-X Corporation

We are working to provide NASA
researchers with tools for interactive

parallel computing

• Project is an SBIR project (Phase I finishing this month)

• We are extending an existing tool for interactive computing (iPython)
to work with parallel computers (multicore and distributed)

• In the Phase I, we automated the use of arrays and demonstrated
parallel FFT (both multicore and distributed) within iPython

• In Phase II, we plan a suite of interactive tools, including tools for
using legacy C/Fortran code with iPython, a library of mathematical
functions, and tools for performance analysis

Traditional Tools for
Scientific Computing

Compiled Languages
• C/C++/Fortran are FAST for computers, SLOW for you.

• Assumes that CPU time is more expensive that human time.

• Everything is low-level, you get nothing for free:

• Only primitive data types.

• Few built-in libraries.

• Manual memory management: bugs and more bugs

• No interactive capabilities:

• Endless edit/compile/execute cycles.

• Any change means recompilation.

• Awkward access to plotting, 3D visualization, system shell

Problems
• Lots of time spent in debugging/compiling.

• Keeps us away from the science.

• Optimization/parallelization can mean (nearly) starting over.

• Parallel code:

• Difficult to debug, even less interactive.

• Extremely time intensive to develop good parallel code.

• Even more awkward access to visualization facilities.

Interactive Computing
Environments

• Matlab, Mathematica, IDL, Maple

• Extremely popular with working scientists:

• Interactive: matches the exploratory nature of science.

• Seamless access to data, algorithms, visualization, etc.

• Great for algorithm development, testing, prototyping, data
analysis.

• Poor performance

• No easy route to optimization.

• No easy route to parallelization.

• Expensive $$$

Python

Why Python?

• Freely available (BSD license).

• Highly portable: OS X, Windows, Linux, supercomputers.

• Can be used interactively (like Matlab, Mathematica, IDL)

• Can wrap existing C/C++/Fortran codes

Libraries: Numpy
• High level Matlab-like arrays/vector/matrices

• Linear algebra, FFTs, Random #s, Fortran Integration

• http://numpy.scipy.org

• Good documentation

In [1]: a = random.rand(10,10) # 10x10 random matrix

In [2]: evals = linalg.eigvals(a) # compute eigenvalues

In [3]: evals.sort(); evals[0]
Out[3]: (-0.90544548812727244+0j)

In [4]: sum(evals)
Out[4]: (4.3298947969780439+0j)

http://numpy.scipy.org/

Libraries: Plotting
• Python bindings for major GUI toolkits (wx, qt, cocoa, tk).

• Matplotlib

• Publication quality 2D plots.

• Builtin LaTeX support.

• Works with Numpy arrays.

• 3D plotting: Visit, TVTK

Example: from enthought.tvtk.tools.mlab import *
fig = figure()
def f(x, y):
 return scipy.sin(x*y)/(x*y)
x = scipy.arange(-7., 7.05, 0.1)
y = scipy.arange(-5., 5.05, 0.05)
s = SurfRegularC(x, y, f)
fig.add(s)

Wrapping Compiled Code
• Scientific codes spend most of their time in a few lines of code.

• Only optimize those parts using C/C++/Fortran and write the rest in
Python.

• Python has many tools for this:

• ctypes: directly call a C shared library.

• Pyrex/Cython: write C code in Python.

• f2py: autogenerate python wrappers for Fortran/C.

• Weave: Write C++ inline in your Python code.

Examples: Weave and ctypes

In [17]: code = 'return_val = a + b;' # This is C code
In [18]: a = 5.0
In [19]: b = 10.0
In [20]: inline(code, ['a', 'b']) # Compile/call on the fly
<weave: compiling>
Out[20]: 15.0

In [17]: libm = cdll.LoadLibrary('libm.so')
In [18]: sqrt = libm.sqrt
In [19]: sqrt.restype = c_double # Set the return type
In [20]: print sqrt(c_double(4.0))
2.0

Weave: write/compile/call C/C++ code inline

ctypes: call existing C libraries with no wrapping

It is straightforward to pass Numpy arrays to these tools

IPython:
An Environment for

Interactive Computing

http://ipython.scipy.org

http://ipython.scipy.org/

Overview of IPython
• Freely available (BSD license).

• Comes with every major Linux distribution.

• Goal: provide an efficient environment for exploratory and
interactive scientific computing.

• All network connections are fully authenticated and encrypted

• Now iPython has distributed memory arrays! (funded through
this NASA Phase I SBIR)

Trends in Hardware
• multicpu and multicore

• Cluster and supercomputers built out of such
components.

• Heterogeneous architectures with complex memory
hierarchies.

• A recent Berkeley white paper suggests that 1000 cores
per chip is optimal (google for “view from berkeley”).

Trends in Software
• For the last decade, the Message Passing Interface (MPI)

and C/C++/Fortran have dominated parallel computing.
High performance, low productivity.

• Threads work well on multicore architectures. Low-level,
error prone.

• Emerging approaches: OpenMP, Fortress, Co-Array-
Fortran, MapReduce.

The Challenge:

• Parallelism in hardware is coming

• The critical issue for us (developers/users of numerical
software) is how parallelism will be expressed in software.

• Can we have both performance and productivity?

• Can we keep legacy C/C++/Fortran MPI codes?

IPython’s Architecture
for Parallel Computing

http://ipython.scipy.org

http://ipython.scipy.org/

Goals
• Make all stages of parallel computing interactive:

development, debugging, testing, execution, monitoring,...

• Make parallel computing collaborative.

• Make use of existing tools and code

• Integrate with threads/MPI/GPUs if appropriate.

• Integrate legacy/compiled code and libraries.

IPython’s Architecture

IPythonIPython
EngineEngine

IPythonIPython
ControllerController

ClientClient

IPythonIPython
EngineEngine

IPythonIPython
EngineEngine

IPythonIPython
EngineEngine

AliceAlice

ClientClient

BobBob

Possibilities: Multicore
• Run the Controller, Engines and a Client on a

multicore laptop/desktop

• Makes it easy to take advantage of multicore CPUs

• Simple path from serial to parallel

• Same code will run on cluster/supercomputers

Possibilities: Clusters

• Run the Controller on a head node

• Use batch system to start Engines on compute
nodes. The Engines can call MPI_Init if desired

• Engines can run any C/C++/Fortran code (including
MPI calls) that has been wrapped into Python

• Connect to the Controller from your laptop and
execute parallel code on a cluster interactively

Possibilities: Collaboration

• The sytem is designed to allow multiple users to
simultaneously connect to a Controller and share a set
of Engines for collaboration

• I start an MPI parallel simulation

• An exception is raised

• You connect, look at the data, debug a function and set
the simulation to continue

• When it finishes I connect and plot the data

IPython’s Distributed
Memory Arrays

(work performed under this Phase I)

Overview

• Based on an single program multiple data, message
passing model

• Two main parts developed in Phase I:

• DistArray Python class

• Algorithms that work with DistArrays

Data Decomposition

• Each array dimension can be distributed or not

• Each distributed dimension can be either block or
cyclic

• Default is block distributed along first dimension

Examples: 16
processes

import distarray as da
a = da.DistArray((64,64))

import distarray as da
a = da.DistArray((64,64), dist=('b','c'))

Algorithms

• Basic element-wise operations

• +/*/-//, cos, sin, etc.

• Simple reductions

• Sum, avg, std, etc.

• Random arrays

• FFT’s

Trigonometric Example

import distarray as da
a = da.random.rand((2000,2000))
b = da.random.rand((2000,2000))
c = da.cos(10.0*a) + da.sin(b/20.0)

Multicore scaling likely limited by memory access

FFT Example

import distarray as da
a = da.random.rand((4096,4096))
b = a.astype('complex128')
filter = da.random.rand((4096, 4096))
c = da.fft.fft2(b)
d = c*filter
e = da.fftw.ifft2(c)

A parallel FFT has significant communication and
thus benefits from multicore

FFT Example

import distarray as daimport distarray as da
a = da.random.rand((4096,4096))
b = a.astype('complex128')
filter = da.random.rand((4096, 4096))
c = da.fft.fft2(b)
d = c*filter
e = da.fftw.ifft2(c)

Nasa Nasa
ResearcherResearcher

fft(b[1028:2047])fft(b[1028:2047])fft(b[0:1027])fft(b[0:1027]) fft(b[2048:3071])fft(b[2048:3071]) fft(b[3072:4095])fft(b[3072:4095])

Our Phase II Vision

LegacyLegacy
C/FortranC/Fortran

CodeCode

InteractiveInteractive
IPythonIPython
SessionSession

DataData
AnalysisAnalysis

(FFT, etc)(FFT, etc)
VisualizationVisualization PerformancePerformance

AnalysisAnalysis

Nasa Nasa
ResearcherResearcher

Directions for Phase II?
• Develop a suite of intrinsic distributed routines

(ScaLAPACK, FFTW, PETSc) optimized for
various architectures (multicore, distributed)

• Develop implemenations for OpenMP (better
performance on multicore?)

• Develop tools for performance analysis (test
suite, graphical display)

• Improve tools for wrapping legacy code (build
tools for important platforms)

• Other directions?

Partners for Phase II?
•Does someone want to try our tools for their project?

●Someone with legacy C/Fortran code who would like
to try Python (interactive data analysis, plotting)?

●Someone who already uses Python, but would like to
use multiple processors?

Jumpshot is a tool for
performance analysis

Performace

• The DistArray class is written in Python

• Lots of logic to create a new DistArray

• Plan on implementing in C

• Overloaded operators and some functiuons
create temporaries

• Can use inplace functions, but sacrifice syntax

• Balance between ease-of-use and performance

